
Problem Set for the NPTEL Course
COMBINATORICS

Module 1: Pigeon Hole Principle

1. (a) Show that if n + 1 integers are chosen from the set {1, 2, . . . , 2n} then
there are always two which differ by 1.

(b) Show that if n + 1 integers are chosen from the set {1, 2, . . . , 3n} then
there are always two which differ by at most 2.

(c) Generalise the above 2 statements.

2. Use the pigeon hole principle to prove that the decimal expansion of a
rational number m/n eventually is repeating.

3. Prove that any 5 points chosen within a square of side length 2, there are
2 whose distance apart is at most

√
2.

4. There are 100 people at a party. Each person has an even number (possibly
0) of aquaintances. Prove that there are 3 people at the party with the
same number of aquaintances.

5. Prove that in a graph of n vertices, where n ≥ 6, there exists either a
triangle (i.e. a complete subgraph on 3 vertices) or an independent set on
3 vertices.

Module 2: Elementary Concepts and Basic Counting Principles

1. Prove that the number of permutations of m A’s and at most n B’s equals

(

m + n + 1

m + 1

)

2. Consider the multiset {n.a, 1, 2, . . . , n} of size 2n. Determine the number
of its n-combinations.

3. Consider the multiset {n.a, n.b, 1, 2, . . . , n + 1} of size 3n + 1. Determine
the number of n-combinations.

4. Establish a bijection between the permutations of the set {1, 2, . . . , n} and
the towers of the form A0 ⊂ A1 ⊂ An, where |Ak| = k for k = 0, 1, . . . , n.

5. A city has n junctions. It is decided that some of them will get traffic
lights, and some of those that get traffic lights will also get a gas station.
If at least one gas station comes up, then in howmany different ways can
this happen ?
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Module 3: More Strategies

1. Find the number of integers between 1 and 10,000 which are neither pefect
squares nor perfect cubes.

2. Determine the number of 12-combinations of the multi-set S = {4.a, 3.b, 4.c, 5.d}.

3. Determine a general formula for the number of permutations of the set
{1, 2, . . . , n} in which exactly k integers are in their natural positions.

4. Use a combinatorial reasoning to derive the identity:

n! =
∑

n

i=0

(

n

i

)

Dn−i, where Di is the number of permutations of {1, 2, . . . , i}
such that no number is in its natural position. (D0 is defined to be 1. )

5. Find the number of permutations of a, b, c . . . , x, y, z in which none of the
patterns spin, game, path, and net occurs.

Module 4: Recurrence Relations and Generating Functions

1. Prove that the Fibonacci sequence is the solution of the recurrence relation

an = 5an−4 + 3an−5, n ≥ 5

where a0 = 0, a1 = 1, a2 = 1, a3 = 2 and a4 = 3. Then use this formula to
show that the Fibonacci numbers satisfy the condition that fn (the n-th
Fibonacci number = an) is divisible by 5 if and only if n is divisible by 5.

2. Consider a 1-by-n chess board. Suppose we color each square of the chess
board with one of 3 colors, red, green and blue so that no two squares
that are colored red are adjacent. Let hn be the number of such colorings
possible. Find and verify a recurrence relation that hn satisfies. Then find
a formula for hn.

3. Solve the recurrence relation hn = hn−1 + 9hn−2 − 9hn−3, n ≥ 3 with
initial values h0 = 0, h1 = 1, h2 = 2.

4. Solve the non-homogenious recurrence relation hn = 4hn−1 + 3.2n, n ≥ 1
with initial value, h0 = 1.

5. Let hn be the number of ways to color the squares of a 1-by-n chess board
with the colors red, white, blue, and green in such a way that the number
of squares colored red is even and the number of squares colored white
is odd. Determine the exponential generating function for the sequence
h0, h1, h2, . . . , and then find a simple formula for hn.

Module 5: Special Numbers

1. Let 2n (equally spaced) points on a circle be chosen. Show that the number
of ways to join these points in pairs, so that the resulting n line segments
do not intersect, equals the nth Catalan number.
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2. Consider the Sterling Number of the second kind, S(n, k). Show that
S(n, n − 2) =

(

n

3

)

+ 3.
(

n

4

)

.

3. The number of partitions of a set of n elements into k distinguishable
boxes (some of which may be empty) is kn. By counting in a different
way, prove that

kn =

n
∑

i=1

(

k

i

)

i!S(n, i)

If k > n, define S(n, k) = 0.

4. For each integer n > 2, determine a self-conjugate partition of n that has
at least two parts.

5. Consider Sterling number of the first kind, s(n, k). Show that
∑

n

i=0
s(n, i) =

n!

6. Let t1, t2, . . . , tm be distinct positive integers, and let qn = qn(t1, t2, . . . , tn)
equal the number of partitions of n in which all parts are taken from
t1, t2, . . . , tm. Define q0 = 1. Show that the generating function for the
sequence q0, q1, q2, . . . , is

∏

m

k=1
(1 − xtk)−1.
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